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The structure of a plane stationary shock wave in a dense high-
temperature plasma has several distinguishing features. These features
have mainly been described and studied in [1-4] (also see survey[5]).
As has been demonstrated in these studies, the structure of a shock
wave in a plasma is discontinuous for rather large Mach numbers:
within the wave, there is a jump in the ion temperature, density, and
velocity of the plasma (the electron temperature remains constant).
The importance of radiation in s case reduces to some effect on the
conditions for formation of the discontinuity if, of course, the photon
mean free path is considerably greater than the particle mean free
path. This discontinuity is naturally called a viscous isoelectron ther-
mal discontinuiry.

The basic mechanism responsible for compression and heating of
the plasma ion component in this discontinuity is plasma viscosity,
due almost completely to ion collisions. In this article we consider
the structure of a discontinuity with allowance for this basic factor,
i.e,, the ion viscosity of the plasma. In this manner we can obtain
many analytic resulss and can analyze the problem in general form.
There is physical justification for ignoring another dissipative process
in the plasma-ion component, i.e., ion heat conduction. Heat con-
duction (Prandtl number Pr & 2.757%) has a very minor effect on the
already diffuse viscosity of the discontinuity region, and quélitatively
it has no effect on the characteristic picture. This problem has been
considered in [6] for the general case of an ideal gas; in this book, it
was noted that because of heat conduction the gas entropy within the
discontinuity region is nonmonotonic, reaching a maximum at some
intermediate point. In our problem, the total entropy, consisting of
the sum of ion and electron entropies, has a maximum within the dis-
continuity even when ion-heat conduction is not allowed for, because
electron entropy clearly decreases in the discontinuity.

Allowing for the small thickness of the region of viscous discon-
tinuity (on the order of the particle mean free path ) in comparison
with the characteristic scale of the structure of the shock wave in the
plasma (on the order of M/me)l Zli. where M and me are respectively,
the fon and electron masses [3]), we can ignore the change in electron
temperature as well as the energy exchange between ions and elec-
trons (due to collisions) in the problem in question. Thus, the problem
of the structure of a viscous isoelectron thermal discontinuity reduces
to our finding the stationary solution to a system of three nonlinear
differential equations defining the velocity, density, and ion tem=
perature of the plasma. We immediately note that this problem dif-
fers considerably from the simpler problem of a viscous discontinuity
in an ideal gas [7] because the plasma-electron component makes a
significant conwibution to the pressure gradient owing to change in
density.

The detailed structure of a shock wave has already been essen-
tially determined, even without the above approximations, in articles
[8~10] which are devoted to a theory of pinch effect in a plasma and
which employ numerical methods to solve a nonstationary system of
equations. However, to understand several physical problems (for ex-~
ample, electrostatic polarization of a plasma in a shock wave) it is
useful to have clearly defined results from the simplified stationary
solution. Without going into a derivation and analysis, reference [10]
gives some of the formulas which will be obtained below and which
were used in calculations of the pinch effect. No new arguments are
given with regard to the applicability of the Navier-Stokes approxi-
mation used to the problem of shock-wave structure, at least with re-
gard to a more consistent kinetic description (see, for example, [9,10]
where these problems are treated in some derail).

§1. Integration of the equations for the structure of
a viscous isoelectron thermal discontinuity, We write
the equation of motion for a plasma and the equation
for heating of the plasma ion component in the plane
stationary case, allowing for only ion viscosity [3, 8]
from among the dissipative processes, and letting y =
= 5/3:
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Here p is the plasma density, v is the plasma velocity,
T is the ion temperature, k is the Boltzmann constant,
and p is a nonlinear coefficient of viscosity of the
plasma ion component. Below we consider only a com-
pletely ionized plasma. Then, according to kinetic
theory [11],

W= B (k7)% = 0.81M"% e+ Z-+ L1 (kTY%,  (1.3)

where ¢ is the charge on an electron, Ze is the charge
on plasma ions, and L is the Coulomb logarithm. The
plasma pressure p which includes the electron-com-
ponent pressure for the specified constant electron
temperature 9, is given by

p=kM~-p (T + Z8,). (1.4)
According to the continuity equation
pU=p oo = m, (1.5)

where p; is the initial density ahead of the discontinu-
ity and v, is the shock-wave velocity. For the system
of equations (1,1~1.5) we must find a solution bounded
at infinity.

We allow for (1.5), and, as we know, Eq. (1.1) has
the first integral

P+ mv=po -+ mvy + 4/ pdv/de. (1.6}

We set kM'IZBﬁ = C, express kM™IT in terms of
p/p, and substitute into Eq. (1.2), eliminating p with
the aid of (1.5):.
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Substituting p from (1.6) and dp/dx from (1.1) into
(1.7), we obtain an equation in one unknown function
v = v(x):
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Upon integration, Eq. (1.8) yields the second inte-
gral of the problem:
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If we obtain an expression for p dv/dx from (1.9) and
substitute it into (1.6), the pressure p at any point will
be defined in terms of the velocity v at this point:

p=—mv+ g (po -+ mwy) (52 —2) 4
(1.10)
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Formula (1.10) can be given in some other form if
the pressure ahead of the discontinuity p, is expressed
in terms of the velocity ahead of the discontinuity v;.
From (1.9) we have
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for the condition dv/dx = 0

Then with (1.11) formula (1.10) can be converted
to the form
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The pressure p; behind the d1scont1nu1ty is given by
(1.12) if we set v = vy
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On comparing (1.11) and (1.13), we see that because
the Hugoniot condition is satisfied momentum is con~
served through the discontinuity.

For future use we introduce the dimensionless quan-
tities

Vp )
According to (1.12), the dimensionless pressure is

N=—u+4 o _,_)511,?_“/’_)_5_
(1.14)
Similarly, Egs. (1.11) and (1.13) yield
=—1+5(1+u1)+ Trlnw,
(1.15)
My = —uy + 5(1+u1) —Elnul.

With (1.14), (1.15), and (1.4), we obtain the follow-
ing expressions for the dimensionless ion temperature
t=nmu-— @:
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To complete the solution to the problem it is still
necessary to find the form of the function u(x). This
can be done with relationship (1.9) by treating it as a
differential equation for the inverse functionx(u). Here,
of course, we assume that u(x) is a monotone function
of the x-coordinate (this will be proven rigorously be-
low). Introducing the unit of length
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and the dimensionless coordinate £ = xx¢” 1, we obtain
from Eq. (1.9) and (1.3)
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It is necessary to substitute p(u) from (1.16) into
{1.20) and integrate it from 1 to u;. Here ¢ variesfrom
—eo to +o. Relations (1.16) and (1.20) basicadly contain
a solution to the problem posed. For ¢ = 0, these re-
lations reduce to familiar expressions and, if the vis-
cosity coefficient does not depend on temperature, Eq.
(1.20) is integrated in elementary functions [7].

§2. Qualitative study. Proof of the existence and
monotonic nature of the solution. In dimensionless
variables, the problem is completely defined by our
specifying two quantities: the dimensionless electron
temperature ¢ and the inverse value of compression
in the discontinuity u;. We can show that these quan-
tities are not completely independent. Restrictions on
the change in ¢ follow from the obvious inequalities

to >0, ty >t ¢>0. (2.1)

The second inequality means that in the discontinu-
ity the ion component is heated. In addition, we note
that this will also be a necessary condition for the in-
crease in plasma entropy in the discontinuity. From
relation (1.17) and the first and third inequalities in
(2.1) we have
2 Inu
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In deriving (2.2) we took account of the properties
of the function U(uy). In the interval 1/4 = u; = 1, this
function increases monotonically from 0.26 to 0.60.
Consequently, the denominator in (2.2) is positive in
this interval of change in u;. We can verify that the
second inequality in (2.1) imposes a weaker restriction
on the quantity ¢, i.e., it is satisfied if inequality
(2.2) is satisfied. In fact, the second inequality leads
to the condition

1—ug?
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It is possible to prove that

Ys (hug —1) 1—uy?
TS s (2.4)

Allowing for (2.2), inequality (2.4) can be written as
1 —u?+ 2uyInu > 0. (2.5)
As can easily be seen, this inequality holds for
0<u < 1,

i.e., even for a wider range of change in uj.

We note that in principle the conditions t; = 0 and ¢ = 0 permit
solutions in which very high compression is involved, when U(u) <
<0, i.e., foru; 0. Here ¢ must clearly be greater than the right-
hand side of (2.2). The condition t; = ty prohibits this solution, be-
cause to prove that this solution is not possible we must prove the re-
verse inequality to (2.4), i.e., we again arrive at (2.5).

Thus, the region of existence for a solution is

Ve <u <1, 0o <y (i)
The shaded region in Fig. 1 represents the region
of existence of a solution. Clearly, we have
o () = Y (uy — 1)/ (). (2.6)

We can show that throughout the region of existence t is a mono-
tonically decreasing function of the variable u. We differentiate (1.16)
with respect to u:
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Allowing for the obvious inequalities
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we can introduce a majorant function, setting ¥ = @ax = Fy(up:
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Consider the values of 3(u} for extreme values of the argument u.
First let u = 1. Then, from (2.6) and (2.8), we obtain

Y()=0 (2.9)
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Fig. 1

Moreover, let u = uy; in the same manner, we obtain
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The sign of this last expression is cbtained from (2.5). Therefore,
the derivative dt/du at extreme points of the interval u (u = uy and
u = 1) is not positive and at the point u = uy it is essentially negative.”
Throughout the interval u; < u < 1 the derivative dt/du is also not
positive. This follows from the expression for the derivative of the
function P(u). From (2.8) we obtain

B (w) = — Yguty (ug) Y. (2.11)

In accordance with (2.11), the function #(u) can decrease for u >
> uy, beginning with its nonpositive value ¢ = u;. Then for u = u¢ =
= [fi(u)] 1/2 the derivative i '(u) vanishes and '(u) = 0 untilu = 1,
i.e., P(u) increases monotonically from the minimum value of ¥(uc)
to the zero value of (1) = 0. If, however, uc < uy, P(u) increases
monotonically only from ¥(uy) to $(1) = 0.

Thus, we have shown that throughout the region of

existence of the solution the ion temperature is a
monotonically decreasing function of velocity:

dtfdu <0, u<u<<il, Ya<u <1,
0 << o</ (uy).

We demonstrate below that the function u(§) in (1.20) also proves
to be a monotonically decreasing function throughout the region of
existence. To do so, it is necessary and sufficient for us to show that
the denominator in the right-hand side of (1.20) is negative everywhere
(u; < u < 1), with the exception of the limit points u = 1and u = uy,
where it vanishes. Thus, we show that the function

(2.12)
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throughout the interval 1 > u > u;. The first derivative X'(u) is rep-
resented by the simple quadratic function

e N e — I
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It follows from (2.14) that for u > 0 the equation x'(u} has two and
only two extrema for any value of ¢:
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We can show that the discriminant of expression (2.15) is positive
when 1/4 =u; =1, and ¥ is any positive number; thus, both roots u,
are real and positive.

From the definition of the function y(u) it follows that x(u) ~
~(@/2)In u=—> —© a5 u—> 0, and that X(u) ~ uz-> 490 35 >,

Moreover, the function y(u) has at least two of the zeroes indi-
cated above: u =y and u = 1. In such a case, the extrema clearly
cannot be inflection points; the left extremum (u = u_) must neces-
sarily be a maximum where x(u_) = 0, and the right extremum (u =
=u,) must be a minimum where ¥(u;) = 0. Moreover, at least one of
the extrema must be located between two known zeroes of the func-
tion y(u). It is now clear that u_ < u; is a necessary and sufficient
condition for inequality (2.13) to be satisfied. However, according to
the above the inequality x'(u;) < 0 is completely equivalent to this
condition. The fact that the conditions u_ < u; and y'(uy} < 0 are

(2.15)

*The equality sign in (2.10) must be omitted since in (2.5) it applies
to the case ug = 1; here (1) > dt/du, with the exception of a single
unessential point (see Fig, 1) where ¢ = fLy=1 simultaneously with
u; = 1.



equivalent can be proven formally. With (2.14) we write the condition
x'(up) < 0in the explicit form

(2.16)

It is easy to see that the inequality V(uy) = 0 is satisfied over the
entire range of change in u;.* Then inequality (2.16) leads to a restric-
tion on the parameter ¢ from above:

¢ <2 —m)¥ (w)- (211
The proof will then be completed by the inequality
Fmax = f1 (uy) < fa (wy)s (2.18)

folu) =21 —u) ¥V (y), Ye<uy <1

The functions fi(u;) and fz(u,) are defined in (2.6) and (2.18).

Inequality (2.18) states that the values of the parameter ¢ which
have physical meaning are smaller than the upper limit set by in-
equality (2.17). Inequality (2.18) is the easiest to justify, by com-
paring graphs of the functions fy(uy) and fa(u;). These graphs have
been calculated with sufficient accuracy. This comparison can be
made by examining Fig. 1. Essentially, both graphs differ little from
the simple-linear functions between the limit points u; = 1/4 and u; =
=1 for which inequality (2.18) is obvious. ]

Thus, it has been shown that d¢/du< 0 for 1 > u>
>uy, /4=y =1, 0= ¢ = fi{u;). The functions f;(u;)
and f;(uy) are also plotted in Fig. 1. The function ¢ =
= f3(uy) means that the finite ion temperature and the
electron temperature t; = ¢ are equal, i.e., t;=¢
where t; is given by (1.18). Similarly, the function ¢ =
= fyluy) follows from the fact that the initial ion tem-
perature and the electron temperature t; = ¢ are equal,
i.e., ty = ¢ where t; is given by (1.17). Physically,
the most interesting region t; < ¢ < t; is located be-
tween these two lines and is represented in Fig. 1 by
the cross-hatched region. Above this region t;< ¢ and
ty < ¢ and below this region, conversely, t; > ¢ and
to > §0-

We summarize the qualitative investigation of the
solution. For all values of the parameters u; and ¢
within the limits 1/4 = u; = 1, 0 = ¢ =< fy{u,) any iso-
electron thermal discontinuity has a very simple con-
tinuous. structure. The values for the compression and
ion temperature increases monotonically in this struc-
ture over the entire thickness. We note that the specific
relationship between the viscosity coefficient and ion
temperature reflects only the effective thickness of the
discontinuity (this appears in the numerator of Eg.
(1.20)) but has no effect on any of the statements made
in this section.

§ 3. Electrostatic polarization of a plasma in any
isoelectron thermal discontinuity. From the Boltz-
mann kinetic equations we can obtain an expression
for electric-current density, using the same approxi-
mation as for the viscosity tensor. As is known, the
basis for this derivation is the Chapman-Enskog method.
The following expression can be obtained for the cur-
rent density in a one~dimensional plane case with no
magnetic field and nonzero density and temperature
gradients [12]:

L aBY Y e g, ) do
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Here L is the Coulomb logarithm,¥ e is the ele-
mentary electric charge, a(Z) and b(Z) are functions
of Z(e=1,2,b=17Tfor Z=1, anda=2.1/Z, b=2.5
for Z > 1). In deriving relation (3.1), electron inertia,
deviations from quasineutrality, and ion motion were
all ignored. Relation (3.1) was also obtained in [13] for
more general assumptions as to the state of the plasma;
in this article, a system oftransportequations for both
plasma components was derived directly. Differences
in ion and electron temperatures and in ion motion
were also considered in [13]. According to [13], Eq.
(3.1) contains the electron temperature if @ = T. Equa-
tion (3.1) also contains the electric~field strength E =
= E(x). It is quite clear that the stationary electric
polarization of the plasma is found from the condition
j=0.

The electric field in the steady state can now be
found if we use relation (3.1):

(3.2)

The electric charge density is found from the Pois~
son equationt :

0 :,7;:? % : (3.3)

Later we apply relations (8.2) and (3.3) to the con-
ditions for a viscous isoelectron thermal discontinuity.
In the first case, d§/dx = 0and @ = 6,; in the second
case, it is convenient to express all quantities in di-
mensionless variables. Then, by introducing the quan-
tities ¢, t, and ¢, Egs. (3.2), (1.5), and (1.20) now
yield

Eo(§) = E%(8), E°=1FkBy/exo, (3.4)
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By differentiating (3.4), we can obtain from (3.3) an
expression for the electric-charge density:

peo B =, 0 @), 0. = Ebmza, 0 €)= de/dE. 5

The expression for o(£) can be written explicitly in
terms of u and t if we use (1.16) and (1.20).

* The—i_nequality V(uy) = 0 is satisfied for a wider range of change
0 =uy =1, similarly to inequality (2.5). This is a consequence of (2.3)
because the elementary transformation uy = x? reduces it to the form
1 —x* + 2x*Inx = 0 which clearly exists when (2.5) is satisfied.

tUnder ordinary gas-discharge conditions, L = 20, be~
cause in this case L is defined in {12-13] as being
twice the value of the Coulomb logarithm (L = 2 Gk35).

t As we know, in deriving Eq. (3.1) for j we can ignhore
the space charge Gk41 p o as long as it is sufficiently
small, In this case, its value should be determined from
(3.3) [13].



With relations (3.4-3.6) we verify that the electro-
static energy can be ignored in comparison with the
thermal energy of the plasma (this fact is made use of
in deriving the basic equations)* and that there is jus-
tification for assuming the plasma to be quasi-neutral.
It is easy to see that the unit of length x(, defined by
relation (1.19), is equal to the effective mean free path
of ions with the dimensionless temperature t on the
order of unity (x, = 0.81M%} /nye' Z' 1) and with the ini-
tial plasma density. The relative deviation from quasi-
neutrality is obtained from (3.6):

Ap  Mp,°

2 s (@) = (2 (3.7)
where we introduce the Debye radius
o kg M ke

D=\ mmzain ) - (5.8)

If, in addition, we introduce the average distance
between plasma particles

d=[Z + )po M™%, (3.9)

condition (3.7) can be represented in a somewhat dif-
ferent manner by eliminating x:

Ap 1 n» ¢

q 8
- mem(})—> s@u®. (3.10)

Throughout the region of existence of the solution
@ = 1. Therefore, in (3.10) there is a small factor in
front of the dimensionless functions, which in order of
magnitude is not greater than (d/D)’. The character-
istic ratio d/D appears in uniform-plasma theory and
its magnitude is smaller the closer the plasma is to an
ideal gas, i.e., the lower the electrostatic energy of
the microfields is in comparison with the thermal en-
ergy. It is natural to expect the ratio of the electro-
static energy {o the thermal energy of the plasmaelec-
tron component to coincide in order of magnitude with
estimates (3.7) or (3.10). It is easy to verify this di-
rectly with relations (3.4) and (3.8):
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and by remembering that aéf ~ Ogf, according to
(1.20), (3.5), and (3.6).

Under ordinary conditions when Z =1 and L = 20,
the ratio d/D =~ 107% in any case, it is known to be
less than unity for a real plasma,t If we take the ratio
d/D=1071, Eqg. (8.10) yields the critical value for the
dimensionless product (Ap/p~ 1):

o ®u@ls=lo @l = 105

It is convenient to use this type of relation to jus-
tify the initial equations for description of the plasma
(as well as the method for calculating the electrostatic
field).

For the conditions used, we must have

o)< lo @)y =

To complete these estimates, we show that the
steadiness condition j = 0 is also satisfied when the

(3.12)

1084, (3.13)

criteria derived above are realized. By virtue of the
equation for continuity of the electric charge, theelec~
tric-current density ji = vopey(§). We take the ratio of
this current to the first term in expression {8.1), using
(1.19), (3.4), and (3.6):

. k8
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From {3.14) it is clear that in general this ratio is
also small if d/D is small.

Thus, in a viscous discontinuity, we can justify
ignoring plasma polarization in hydrodynamic equa-
tions (1.1~1.4). Although polarization has almost no
effect on the hydrodynamic and thermodynamic quan-
tities, it is of considerably physical interest in itself.
For example, we can consider particle acceleration
within the discontinuity. To do this, we estimate the
potential difference AW at the viscous discontinuity.
According to (8.2) and the isothermicity condition

S Eydy = Iﬁe" n e — ‘00 Iy
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the potential difference is basically determined by the
electron temperature. It is clear from (3.15) that if a
charged particle overcomes this potential difference
its energy changes by a value equal to the average
electron thermal energy, if Z~ 1. This energy in-
crement will occur over a length on the order of the
mean free path of the plasma ions. We can now con-
clude that plasma particles cannot be effectively ac~
celerated under such conditions, although for a multi-
charge plasma this process is more significant. Of
course, in addition to the electrostatic field, it is also
of interest to study the possible electromagnetic radi-
ation of a shock wave in a plasma. However, this ef-
fect depends not only on the structure of the viscous
discontinuity. It is also governed by the entire con-
figuration of the shock wave in space and bythe proper-
ties of the environment. We can only indicate here the
highest frequency (in order of magnitude) in the signal
spectrum v ~ vy /£ ofxy where gef is the effective di-
mensionless width of the discontinuity.

8§ 4. Physical results from calculating the structure
of a discontinuity. Numerical integration of Eq. (1.20)
together with (1.16) and the corresponding boundary

*Some of these estimates are given in {6], but there
they are based on qualitative considerations. The esti-
mates given in our article follow from the general ex-
pressions (3.1-3.3) and make allowance for energy rela-
tions.

* For example, when 6, *10°°K, n, 6.10% cm-3 fp,

2 mm Hg) we have D= 2.0-10"% cm, d=2,0-1076 cm,

or when 6, ~107 ° K ny~6-10' ecm=3, D=6,3-10-% cm,
d=4.4-1077, Such conditions are typical of pincheffect
in the dense plasma described in [15].
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conditions makes it possible, in principle, to find all
quantities describing the structure of a discontinuity
for any pair of values of the parameters u; and ¢. The
functions t(¢) and u{£) computed in this manner can be
lumped with the functions 7(¢), (), and o(£) if we
use (1.14), (3.5), and (3.6), respectively. The table
gives certain characteristic quantities, i.e., the ef-
fective width of the discontinuity §efs* and the initial
and final ion temperatures t; and t;. For each value of
the dimensionless velocity behind the discontinuity u;,
three characteristic values are chosen for the dimen-
sionless electron temperature ¢. Here the extreme
values of ¢ will be the maximum ones possible (as is
clear from Fig. 1 where all variants in the table are
denoted by circles). It immediately follows that all
variants with ¢ = 0 have no immediate physical mean-
ing since in this case the assumption that the discon-
tinuity be isoelectron thermal is not justified. From
the relationship between the ion and electron thermal
conductivity coefficients,

RPNy (&)‘/2 (&)=
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it follows that to justify the assumption that the dis-
continuity be isoelectron thermal we must have

@ > (m/M)h ty.

However, it is easy to see that condition (4.2) will
be necessary but not sufficient since the electron tem-
perature is not equalized instantaneously. For this
reason, lines in the table with ¢ = 0 only serve to es—
timate the effect of the plasma electron component on
the structure of the viscous discontinuity. With this in
mind, we can compare lines with ¢ = 0 with the aver-
age lines for which t; < ¢ < t;. When compression is
constant and the pressure of the electron component of
the plasma is on the order of the ion-component pres-
sure, there is a decrease in the width of the discon-
tinuity by a factor of 2 or 3. Clearly, the main reason
for the decrease in £or is the decrease in the finite
ion temperature t;. According to (1.20), ef ~ t51 2
(more exactly, if we shift from the case ¢ = 0 to the
case ¢ ~ t;) there is a small counterbalancing effect
due to the decrease in the denominator on the right-
hand side of (1.20). Incidentally, with (1.17) and (1.18)
it is easy to show that throughout the region of exis~
tence of the solution (Fig. 1),

81,99 << 0, dto/Bp < B, 8ti/duy >> 0.

The lines of the table with largest ¢ also do not have
any physical meaning, but for a completely different
reason than the lines with ¢ = 0. In these variants,
because of the extremely small values of {¢f, elec-
trostatic fields and space charges are obtained which
are much greater than their critical values; these can
be estimated, for example, with (3.12) and (3.13). All
these variants correspond to a zero initial ion tem-
perature t; = 0. This situation does not occur for a
stationary shock-wave structure in a plasma, because
owing to energy exchange by collision and the minor

(4.1)

(4.2)

(4.3)
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amount of plasma compression ahead of the viscous
discontinuity the ion temperature becomes nonzero.
The discontinuity considered above also cannot occur
in the stationary case when ¢ = 0. As shown in [4],
for Z=1 and A =1 (hydrogen plasma) we have tj< ¢ <
< ty. If, however, Z = 3 and A = 7 (lithium plasma),
the values of ¢ are somewhat larger so that they fall
within the limits ty < ¢/3 < t;. The crosses in Fig. 1
represent those parameters of viscous discontinuities
obtained for stationary shock waves in [4]. The two
crosses above the interval t, < ¢ < {; apply to the case
Z =3 and A =7. For still larger values of Z, the val~-
ues of ¢ will be even higher. In the case of an unlim-
itedly strong stationary shock wave the parameter u; =
=0.320 for Z=1 and A=1, whileu;=0.385 for Z=3
and A =7 (see Fig. 1). Therefore, the last line in the
table with u; = 0.25 also has no meaning.

Thus, remembering that our primary concern is
with a stationary shock wave in a plasma, we turn our
attention to the data in the table for average values of
@.

It is of interest to compare the different regions in
which the stationary shock wave occurs. We can limit
ourselves to the case of a hydrogen plasma where Z =
=1 and A=1, because here the width of the viscous
discontinuity is relatively at a maximum owing to the
various dependences of the electron and ion mean free
paths on the ion charge Z. For two typical cases we
give the effective widths of the stationary shock-wave
structure before the discontinuity A, and after the
discontinuity Ay, as well as the effective widths of the
discontinuity itself (£qf), the values of the total re-
verse compression uf (denoted in [4] as uy), and the

values of the reverse compression in the discontinuity
uy:

uy AEy Aty Ees ur*

0.75 2.9 A 0 0.58

1.1 1.
0.32 - 0.11  0.048 0.022- 0.25

The quantities A&y and Aé, are taken from [4] but
are given in terms of the unit of length in this article
(1.19). The values of {,¢ are obtained by interpola-
tion between the lines of the table closest to u; (we
can ignore the difference in the values of the param-
eter ¢). As is clear from these data, for a weakshock
wave (upper row) £or ~ ALy even in this case, how-
ever, the electron temperature varies little over a
length ~A¢, (see Fig. 6 in [4]). Thus, we can assume
the isoelectron thermal condition is in effect although
there is no great difference between £qo¢ and Afy (and
A&,). The data presented are confirmed qualitatively
by numerical calculation (see Fig. 10 of [10] and Fig.
1 of [9]).

In addition, consider criterion (3.13), which indi-
cates a rather low degree of plasma electrostatic po-
larization. For this purpose, the table gives values

*The effective width of the discontinuity Ee is arbi~ .
trarily defined here as the distance between two points
of the discontinuity structure with u8‘= 0.99 and uj =
uy +0.01,
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Fig. 3

for ol =108 ™ (in accordance with (3.12) and esti-
mated maximum values for |o|yax for u; and ¢. It is
clear from the table that criterion (3.13) is satisfied
with greatest room to spare even when u; = 0.3, As
follows from the calculations, electrostatic polariza-

tion of the discontinuity has a very simple dipole struc

ture with a leading negative-charge maximum roughly
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twice as great as the successive positive-charge max-
imum {Jomin! ® 20max). For a multicharge plasma, a
was shown for Z = 3, the parameter ¢ lies above the
interval t) < ¢ < t;. Here £q¢ decreases andl |alpax
increases; this increase is roughly proportional to
ngz. In general, however, the critical value of loJ
also increases since

T~

and the temperature 6, for a given density p, must be
considerably greater for a multicharge plasma. A
more detailed analysis performed for the specific case
of lithium plasma shows that the relation between
{0l max and IO‘l* remains about the same as for a hydro~
gen plasma.

Nevertheless, if criterion (3.13) is violated for any
reason, the preceding method of considering the struc-
ture of a viscous isoelectron thermal discontinuity is
no longer applicable. It would then be necessary to
solve a considerably more complex problem with al-

*?

60 1
w BEZIT)

lowance in the initial equations for the difference in
electron and ion velocities and densities. In other
words, it would be necessary to allow for the counter-
ing effect of the electric field on plasma motion. This
was done in [16] for some particular cases. We can

uy @ Bef ta it loly lolmax
0.8 0.795 4.2.107 0 1.06.10-3 '
0.295 1.43 0.278 0.320 1.32.100 0.4
0 4.08 0.443 0.508
0.7 0.686 8.2.107 0 £.02.4078
0.260 6.672 0.225 0.286 7,19.1010 4
0 1.99 0.362 0.458
0.6 0.572 7,010~ 0 1.09-10-2
0.220 0.316 0.173 0.253 4.26.1010 30
0 0.944 0.282 0.403
0.5 0.449 | 3.96.10~ 0 2.52.1072
0.170 0.143 0,125 0.224 1.19.101 3400
0 0.402 0.201 0.345
0.4 0.308 | 1.78.10~ 0 5.4-10°2
0.120 | 5.46-10~ 7.4.1072 0.194 4.85.101 .10
0 0.140 0.121 0.283 .
0.3 0.128 | 7.47.407 0 0.102
0.080 | 1.44.107 1.5.102 0.155 24410 | 4,4.107
0 3.38.10~ 41072 0.217
0.25 0 1.45.10™2 Q 0.182
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expect (3.13) to be violated, for example, in the com-
plex structure of a nonstationary shock wave or in the
case of a very dense plasma in which the ratio d/D
increases and approaches unity.

More detailed information as to the structure of a
viscous isoelectron thermal discontinuity is given in
Figs. 2—4, where profiles of the functions t, u, &,
and ¢ are constructed as functions of the coordinates
¢. Here the various figures differ in the values for the
finite plasma velocity u;; these values are respec-
tively 0.7, 0.5, and 0.3. Values for the parameter ¢
are chosen in the same manner as in the table.

In conclusion, the author expresses his apprecia-
tion to V. F. D'yachenko for his valuable comments
and to V. 8. I'in, who integrated the equations nu-
merically and constructed the graphs.
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